Skip to contents

πŸš€ Design ETo calculation estimation

This article shows a quick example of how to download INMET station data and estimate reference evapotranspiration (ETo) using FAO-56, followed by the calculation of the design ETo.

πŸ“¦ Load the package

🌍 View available INMET stations

Before downloading data, you can check the available weather stations with:

see_stations_info()
#> # A tibble: 564 Γ— 8
#>    station_municipality uf    situation_operation latitude_degrees
#>    <chr>                <chr> <chr>                          <dbl>
#>  1 Abrolhos             BA    breakdown                     -18.0 
#>  2 Acarau               CE    breakdown                      -3.12
#>  3 Afonso Claudio       ES    operating                     -20.1 
#>  4 Agua Boa             MT    operating                     -14.0 
#>  5 Agua Clara           MS    operating                     -20.4 
#>  6 Aguas Emendadas      DF    operating                     -15.6 
#>  7 Aguas Vermelhas      MG    operating                     -15.8 
#>  8 Aimores              MG    operating                     -19.5 
#>  9 Alegre               ES    operating                     -20.8 
#> 10 Alegrete             RS    operating                     -29.7 
#> # β„Ή 554 more rows
#> # β„Ή 4 more variables: longitude_degrees <dbl>, altitude_m <dbl>,
#> #   operation_start_date <dttm>, station_code <chr>

⬇️ Download daily weather data

Let’s download daily meteorological data for one stations between January 2000 until March 2025:

df <- BrazilMet::download_AWS_INMET_daily(stations = "A001",
                                          start_date = "2000-01-01",
                                          end_date = "2025-03-31")
#> Downloading data for: 2000
#> Downloading data for: 2001
#> Downloading data for: 2002
#> Downloading data for: 2003
#> Downloading data for: 2004
#> Downloading data for: 2005
#> Downloading data for: 2006
#> Downloading data for: 2007
#> Downloading data for: 2008
#> Downloading data for: 2009
#> Downloading data for: 2010
#> Downloading data for: 2011
#> Downloading data for: 2012
#> Downloading data for: 2013
#> Downloading data for: 2014
#> Downloading data for: 2015
#> Downloading data for: 2016
#> Downloading data for: 2017
#> Downloading data for: 2018
#> Downloading data for: 2019
#> Downloading data for: 2020
#> Downloading data for: 2021
#> Downloading data for: 2022
#> Downloading data for: 2023
#> Downloading data for: 2024
#> Downloading data for: 2025

The resulting data frame includes temperature, solar radiation, wind speed, humidity, and atmospheric pressure

🧠 Calculate daily ETo using FAO-56

Now we use the daily_eto_FAO56() function to estimate daily ETo values:

df$eto <- daily_eto_FAO56(
  lat    = df$latitude_degrees,
  tmin   = df$tair_min_c,
  tmax   = df$tair_max_c,
  tmean  = df$tair_mean_c,
  Rs     = df$sr_mj_m2,
  u2     = df$ws_2_m_s,
  Patm   = df$patm_mb,
  RH_max = df$rh_max_porc,
  RH_min = df$rh_min_porc,
  z      = df$altitude_m,
  date   = df$date
)

πŸ’§ Design ETo calculation

And after the ETo calculation, we use the design_eto() function to estimate the design ETo for irrigation project purpose:


eto_design <- BrazilMet::design_eto(eto_daily_data = df, percentile = .80)

πŸ“ Printing the design ETo based on an 80% probability of occurrence

Below is a basic line plot of daily ETo:


print(eto_design)
#>   design_eto
#> 1   5.672264

βœ… Summary

The BrazilMet package allows you to download official INMET weather data and compute ETo using the FAO-56 method in a reproducible and efficient way. This is essential for irrigation planning, crop modeling, and climate-based decision support.